

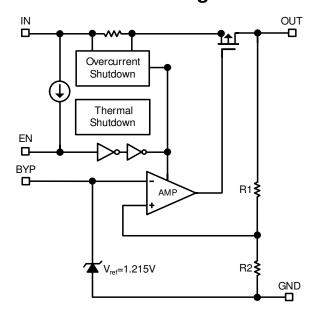
■ General Description

The AME8861 family of positive, linear regulators feature low guiescent current (30µA typ.) with low dropout voltage, making them ideal for battery applications. The space-saving SOT-25 package is attractive for "Pocket" and "Hand Held" applications.

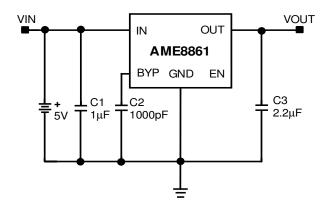
These rugged devices have both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

In applications requiring a low noise, regulated supply, place a 1000 pF capacitor between Bypass and ground.

The AME8861 is stable with an output capacitance of 2.2µF or greater.

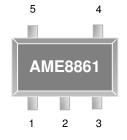

■ Features

- Very Low Dropout Voltage
- 600mA Output
- Accurate to within 1.5%
- 30μA Quiescent Current
- Over-Temperature Shutdown
- Current Limitings
- Short Circuit Current Fold-back
- Noise Reduction Bypass Capacitor
- Power-Saving Shutdown Mode
- Space-Saving SOT-25 Package
- Factory Pre-set Output Voltages
- LLow Temperature Coefficient
- All AME's Lead Free Products Meet RoHS Standards


■ Applications

- Instrumentation
- Portable Electronics
- Wireless Devices
- Cordless Phones
- PC Peripherals
- Battery Powered Widgets
- Electronic Scales

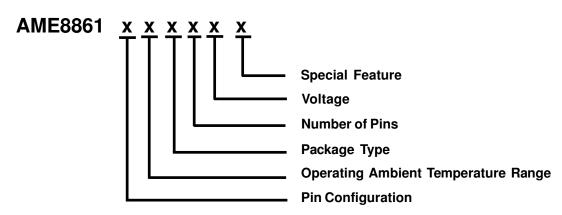
■ Functional Block Diagram



■ Typical Application

■ Pin Configuration

SOT-25 Top View


AME8861

- 1. IN
- 2. GND
- 3. EN
- 4. BYP
- 5. OUT
- * Die Attach:

Conductive Epoxy

■ Ordering Information

Pin Configuration	Operating Ambient Temperature Range	Package Type	Number of Pins	Output Voltage	Special Feature
A: 1. IN (SOT-25) 2. GND 3. EN 4. BYP 5. OUT	E: -40 ^o C to +85 ^o C	E: SOT-2X	V: 5	180: V=1.8V 250: V=2.5V 300: V=3.0V 330: V=3.3V	Z: Lead Free

Part Number	Marking*	Output Voltage	Package	Operating Ambient Temperature Range
AME8861AEEV180Z	BFNww	1.8V	SOT-25	- 40°C to + 85°C
AME8861AEEV250Z	AXCww	2.5V	SOT-25	- 40°C to + 85°C
AME8861AEEV300Z	AWGww	3.0V	SOT-25	- 40°C to + 85°C
AME8861AEEV330Z	AXBww	3.3V	SOT-25	- 40°C to + 85°C

Note: www represents the date code and pls refer to date Code Rule before Package Dimension.

Please consult AME sales office or authorized Rep./Distributor for the availability of output voltage and package type.

^{*} A line on top of the first character represents lead free plating such as BFNww.

■ Absolute Maximum Ratings

Parameter	Maximum	Unit
Input Voltage	8	V
Output Current	P _D / (V _{IN} - V _O)	Α
Input, Output Voltage	GND - 0.3 to V _{IN} + 0.3	V
ESD Classification	B*	

Caution: Stress above the listed absolute maximum rating may cause permanent damage to the device.

■ Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Ambient Temperature Range	T _A	- 40 to +85	°C
Junction Temperature Range	TJ	- 40 to +125	°C
Storage Temperature Range	T _{STG}	- 65 to +150	°C

■ Thermal Information

Parameter	Package	Die Attach	Symbol	Maximum	Unit	
Thermal Resistance* (Junction to Case)			θЈС	81	°C / W	
Thermal Resistance (Junction to Ambient)	SOT-25	Conductive Epoxy	$\theta_{\sf JA}$	260	C / W	
Internal Power Dissipation			P _D	400	mW	
Maximum Junction Temperatur	150	°C				
Solder Iron (10 Sec)**	350	°C				

^{*} Measure θ_{JC} on center of molding compound if IC has no tab. ** MIL-STD-202G 210F

^{*} HBM B:2000V~3999V

■ Electrical Specifications

T_A= 25°C unless otherwise noted.

Parameter	Symbol	Test C	Condition	Min	Тур	Max	Units	
Input Voltage	V _{IN}			Note 1		7	V	
Output Voltage Accuracy	Vo	l _O =	=1mA	-1.5		1.5	%	
			1.3V <v<sub>O(NOM)<=1.4V</v<sub>			1900		
Duran and Malkana	V	I _O =600mA	1.4V <v<sub>O(NOM)<=2.0V</v<sub>		See	1400	mV	
Dropout Voltage	V _{DROPOUT}	$V_O = V_{O(NOM)}$ -2.0%	2.0V <v<sub>O(NOM)<=2.8V</v<sub>		chart	800	IIIV	
			2.8V <v<sub>O(NOM)</v<sub>			600		
Output Current	l _o	Vo	>1.2V	600			mA	
Current Limit	I _{LIM}	Vo	>1.2V	600	800		mA	
Short Circuit Current	I _{SC}	Vo	<0.8V		300	600	mA	
Quiescent Current	lα	I _O =	=0mA		30	50	μΑ	
Ground Pin Current	I _{GND}	I _O =1mA to 600mA			35		μА	
	REG _{LINE}		1.3V<=V _O <=1.4V	-0.2		0.2	.2	
Line Regulation		I _O =1mA	1.4V <v<sub>O<=2.0V</v<sub>	-0.15		0.15	%	
Line negulation		$V_{IN}=V_O+1$ to V_O+2	2.0V <v<sub>O< 4.0V</v<sub>	-0.1	0.02	0.1	70	
			V _O >=4.0V	-0.4	0.2	0.4		
Load Regulation	REG _{LOAD}	I _O =1mA	to 600mA		0.2	1	%	
Over Temperature Shutdown	OTS				150		°C	
Over Temperature Hysterisis	OTH				30		°C	
V _O Temperature Coefficient	TC				30		ppm/°C	
		I _O =100mA	f=1kHz		75			
Power Supply Rejection	PSRR	$C_O=2.2\mu F$ ceramic	f=10kHz		55		dB	
		$C_{BYP}=0.01\mu F$	f=100kHz		30			
		f=10Hz to 100kHz						
Output Voltage Noise	eN	l _O =10mA,	Co=2.2μF		30		μVrms	
		$C_{BYP}=0.01\mu F$						

600mA CMOS LDO

■ Electrical Specifications (Contd.)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
EN Input Threshold	V _{EH}	V _{IN} =2.7V to 7V	2.0		Vin	V
	V _{EL}	V _{IN} =2.7V to 7V	0		0.4	٧
EN Input Bias Current	I _{EH}	$V_{EN} = V_{IN}, V_{IN} = 2.7V \text{ to } 7V$			0.1	μΑ
	I _{EL}	V_{EN} =0V, V_{IN} =2.7V to 7V			0.5	μΑ
Shutdown Supply Current	I _{SD}	V_{IN} =5V, V_{O} =0V, V_{EN} < V_{EL}		0.5	1	μΑ
PG Leakage Current	I _{LC}	V _{PG} =7V			1	μΑ

Note1: $V_{IN(MIN)} = V_{OUT} + V_{DROPOUT}$ Note2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

600mA CMOS LDO

■ Detailed Description

The AME8861 family of CMOS regulators contain a PMOS pass transistor, voltage reference, error amplifier, over-current protection, and thermal shutdown.

The P-channel pass transistor receives data from the error amplifier, over-current shutdown, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150°C, or the current exceeds 600mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120°C.

The AME8861 switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over-stress. The AME8861 also incorporates current foldback to reduce power dissipation when the output is short circuited. This feature becomes active when the output drops below 0.8 volts, and reduces the current flow by 65%. Full current is restored when the voltage exceeds 0.8 volts.

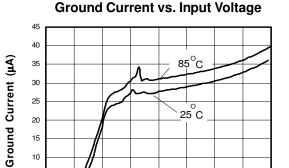
■ External Capacitors

The AME8861 is stable with an output capacitor to ground of $2.2\mu F$ or greater. Ceramic capacitors have the lowest ESR, and will offer the best AC performance. Conversely, Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response. Unfortunately, large value ceramic capacitors are comparatively expensive. One option is to parallel a $0.1\mu F$ ceramic capacitor with a $10\mu F$ Aluminum Electrolytic. The benefit is low ESR, high capacitance, and low overall cost.

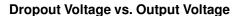
A second capacitor is recommended between the input and ground to stabilize Vin. The input capacitor should be at least $0.1\mu F$ to have a beneficial effect.

A third capacitor can be connected between the BY-PASS pin and GND. This capacitor can be a low cost Polyester Film variety between the value of 0.001 \sim 0.01 μF . A larger capacitor improves the AC ripple rejection, but also makes the output come up slowly. This "Soft" turn-on is desirable in some applications to limit turn-on surges.

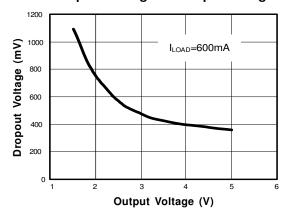
All capacitors should be placed in close proximity to the pins. A "Quiet" ground termination is desirable. This can be achieved with a "Star" connection.


■ Enable

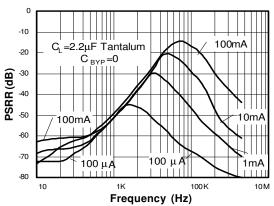
The Enable pin normally floats high. When actively, pulled low, the PMOS pass transistor shuts off, and all internal circuits are powered down. In this state, the quiescent current is less than $1\mu A$. This pin behaves much like an electronic switch.

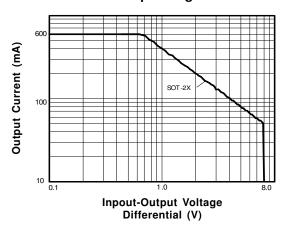


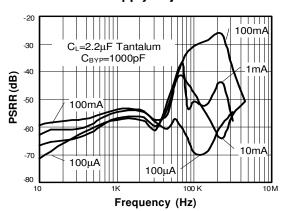
■ Characterization Curve



Time (20mS/Div)

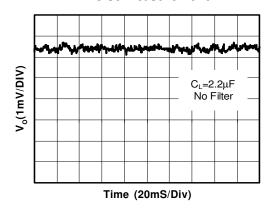

Load Step (1mA-600mA)

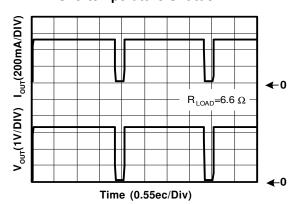

Input Voltage (V)



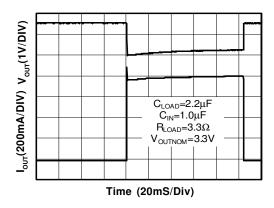
Safe Operating Area

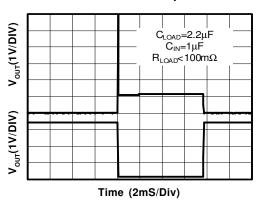
Power Supply Rejection Ratio

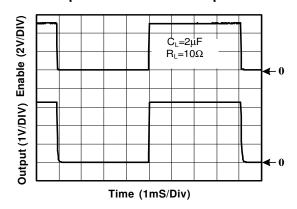


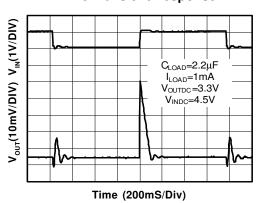


■ Characterization Curve (Contd.)


Noise Measurement

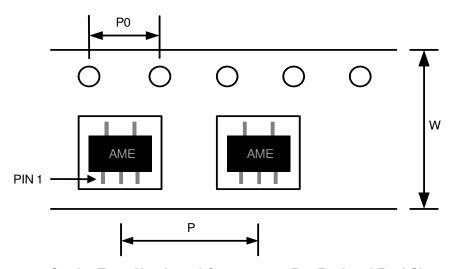

Overtemperature Shutdown


Current Limit Response


Short Circuit Response

Chip Enable Transient Response

Line Transient Response



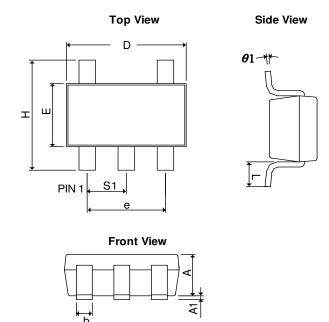
■ Date Code Rule

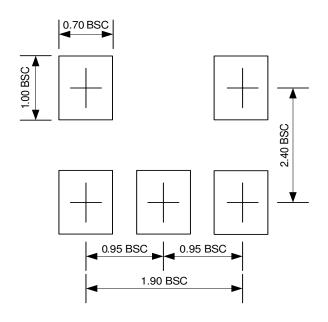
Marking			Date	Year	
Α	Α	Α	W	W	xxx0
Α	Α	Α	W	W	xxx1
Α	Α	Α	W	W	xxx2
Α	Α	Α	W	W	xxx3
Α	Α	<u>A</u>	W	W	xxx4
Α	Α	<u>A</u>	W	W	xxx5
Α	Α	<u>A</u>	W	W	xxx6
Α	Α	<u>A</u>	W	W	xxx7
Α	<u>A</u>	Α	W	W	8xxx
Α	<u>A</u>	Α	W	W	xxx9

■ Tape and Reel Dimension

SOT-25

Carrier Tape, Number of Components Per Reel and Reel Size


Package	Carrier Width (W)	Pitch (P)	Pitch (P0)	Part Per Full Reel	Reel Size
SOT-25	8.0±0.1 mm	4.0±0.1 mm	4.0±0.1 mm	3000pcs	180±1 mm


■ Package Dimension

SOT-25

SYMBOLS	MILLIN	IETERS	INCHES		
STWIDOLS	MIN	MAX	MIN	MAX	
Α	0.90	1.30	0.0354	0.0512	
A ₁	0.00	0.15	0.0000	0.0059	
b	0.30	0.55	0.0118	0.0217	
D	2.70	3.10	0.1063	0.1220	
E	1.40	1.80	0.0551	0.0709	
е	1.90	BSC	0.0748 BSC		
Н	2.60	3.00	0.1024	0.1181	
L	0.37 BSC		0.014	6 BSC	
θ1	0°	10°	0°	10°	
S ₁	0.95	BSC	0.037	4 BSC	

■ Lead Pattern

Note:

1. Lead pattern unit description:

BSC: Basic. Represents theoretical exact dimension or dimension target.

- 2. Dimensions in Millimeters.
- 3. General tolerance ± 0.05 mm unless otherwise specified.

www.ame.com.tw E-Mail: sales@ame.com.tw

Life Support Policy:

These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president of AME, Inc.

AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information.

© AME, Inc. , September 2018 Document: 2006/2095-DS8861-F.01

Corporate Headquarter AME, Inc.

8F, 12, WenHu St., Nei-Hu Taipei 114, Taiwan.

Tel: 886 2 2627-8687 Fax: 886 2 2659-2989