$5.5 \mathrm{~V}, 6 \mathrm{~A}, 23 \mathrm{~m} \Omega$
AME6204
Single Channel Load Switch

General Description

The AME6204 is a small, low R_{ON}, single-channel load switch with enable function. The device contains a N -channel MOSFETs that can operate over an input voltage range of 0.8 V to 5.5 V and can offer a maximum continuous current of 6A

The EN pin is controlled by an on and off input, which can be driven directly by low-voltage control signals. In AME6204, a 225Ω on-chip load resistor is added for quick-output discharge when AME6204 is turned off. It's available in a small, space-saving DFN-8D ($2 \times 2 \times$ 0.75 mm) package with thermal pad allowing for high power dissipation.

Features

- Input Voltage Range: 0.8 V to 5.5 V
- Bias Voltage Supports: 2.5 V to 5.5 V
- Integrated Single-Channel Load Switch
- 6A Maximum Continuous Current
- Ultra low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} 23 \mathrm{~m} \Omega$
- Low Quiescent Current $(46 \mu \mathrm{~A})$
- Thermal Protection
- Adjustable Rise Time
- Quick Output Discharge (QOD)
- DFN-8D ($2 \times 2 \times 0.75 \mathrm{~mm}$) Package with Thermal Pad
- RoHS Compliant

Application

- Ultrabook, Notebooks and Netbooks
- Tablet PCs
- Consumer Electronics
- Set-top Boxes and Residential Gateways
- Telecom Systems
- Solid-State Drives (SSD)

■ Typical Application Schematic

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 23 \mathrm{~m} \Omega$
Single Channel Load Switch
Function Block Diagram

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 23 \mathrm{~m} \Omega$
AME6204

Pin Configuration

Top View DFN-8D (2x2x0.75mm)

■ Pin Description

Pin Name	Pin No.	I/O	Description
IN	1,2	I	Power-switch input. 0.8V to BIAS voltage range for optimal $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ is recommended. Place an optional decoupling capacitor between this pin and GND for reduce input voltage dip during turn on.
EN	3	I	ON/OFF control input. Active high is turn-on. Do not leave it floating.
BIAS	4	I	Bias voltage input. Recommend voltage range (2.5V to 5.5V) to supply the device.
GND	5	-	Ground
CT	6	I	Power-switch slew-rate control. Capacitor must be rated for a minimum of 25V for desired rise time performance. This pin can be left floating.
OUT	7,8	O	Power-switch output.

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 23 \mathrm{~m} \Omega$
AME6204 Single Channel Load Switch

Ordering Information

AME6204 - x x x

Pin Configuration	Package Type	Number of Pins
A: 1. IN	V: DFN	A: 8
2. IN		
3. EN		
4. BIAS		
5. GND		
6. CT		
7. OUT		
8. OUT		

Absolute Maximum Ratings

Parameter	Value	Unit
Input Voltage	-0.3 to +6	V
BIAS Voltage (BIAS)	-0.3 to +6	V
Output Voltage	-0.3 to +6	V
Enable Voltage	-0.3 to +6	V
Output Current (Continuous)	6	A
Output Current (Pulsed) (Note1)		8
ESD Ratings	HBM	± 2000
	MM	V
	MM	V
	CDM	± 1000

Note1: Maximum pulsed current switch, pulse $<300 \mu \mathrm{~s}, 3 \%$ duty cycle.

■ Recommended Operation Conditions

Parameter	Symbol	Value	Unit
Input Voltage	$\mathrm{V}_{\text {IN }}$	0.8 to $\mathrm{V}_{\mathrm{BIAS}}$	V
BIAS Voltage	$\mathrm{V}_{\mathrm{BIAS}}$	2.5 to 5.5	V
Enable Voltage	V_{EN}	0 to 5.5	V
Ambient Temperature Range	T_{A}	-40 to +85	
Junction Temperature Range	T_{J}	${ }^{\circ} \mathrm{C}$	
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +125	

■ Thermal Information

Parameter	Package	Die Attach	Symbol	Maximum	Unit
Thermal Resistance* (Junction to Case)	DFN-8D	Conductive Epoxy	θ_{Jc}	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (Junction to Ambient)	DFN-8D	Conductive Epoxy	θ_{JA}	66	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Internal Power Dissipation	DFN-8D	Conductive Epoxy	P_{D}	1515	mW
Lead Temperature (soldering 10 sec)**					

* Measure θ_{Jc} on backside center of Exposed Pad.
** MIL-STD-202G210F
$5.5 \mathrm{~V}, 6 \mathrm{~A}, 23 \mathrm{~m} \Omega$
Single Channel Load Switch

Electrical Specifications

$\mathrm{V}_{\text {BAIS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
BIAS Pin Quiescent Current	l_{0}	$\begin{gathered} \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {BIAS }}=5 \mathrm{~V}, \\ \mathrm{~V}_{\text {EN }}=5 \mathrm{~V} \end{gathered}$		46	72	$\mu \mathrm{A}$
		$\begin{gathered} \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {BIAS }}=2.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{EN}}=2.5 \mathrm{~V} \end{gathered}$		28	37	$\mu \mathrm{A}$
BIAS Pin Shutdown Current	$\mathrm{I}_{\text {SHon_bias }}$	$V_{\text {EN }}=0 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
IN Pin Shutdown Current	$\mathrm{I}_{\text {SHDN_IN }}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$ to 5 V		0.1	1	$\mu \mathrm{A}$
EN Pin Current	$I_{\text {EN }}$	$V_{\text {EN }}=5.5 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
ON Resistance	$\mathrm{R}_{\text {DS(ON) }}$	$\begin{gathered} \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~V}_{\text {BIAS }}=5 \mathrm{~V}, \\ \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V} \text { to } 5 \mathrm{~V} \end{gathered}$		23	30	$\mathrm{m} \Omega$
		$\begin{gathered} \text { lout }=200 \mathrm{~mA}, \mathrm{~V}_{\text {BIAS }}=2.5 \mathrm{~V}, \\ \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{gathered}$		24	31	$\mathrm{m} \Omega$
Output Discharge Resistance	$\mathrm{R}_{\text {DSG }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}$		225	300	Ω
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {BIAS }}=2.5 \mathrm{~V}$		275	325	Ω
EN Pin High Level	$\mathrm{V}_{\text {EN_H }}$		1.2			V
EN Pin Low Level	$\mathrm{V}_{\text {EN_L }}$				0.6	V
Thermal Shutdown Temperature	$\mathrm{T}_{\text {sD }}$			150		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis	$\mathrm{T}_{\text {SDHY }}$			30		${ }^{\circ} \mathrm{C}$

Parameter Measurement Information

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Turn-on Time	Ton	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		1320		$\mu \mathrm{S}$
Turn-off Time	T OFF	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		2		$\mu \mathrm{S}$
$\mathrm{V}_{\text {Out }}$ Rise Time	T_{R}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		1768		$\mu \mathrm{S}$
$V_{\text {Out }}$ Fall Time	T_{F}	$R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		3		$\mu \mathrm{S}$
ON Delay Time	T	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		272		$\mu \mathrm{S}$
$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Turn-on Time	ToN	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		340		$\mu \mathrm{S}$
Turn-off Time	T OFF	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		20		$\mu \mathrm{S}$
$\mathrm{V}_{\text {Out }}$ Rise Time	T_{R}	$R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		225		$\mu \mathrm{S}$
$\mathrm{V}_{\text {Out }}$ Fall Time	T_{F}	$R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		3		$\mu \mathrm{S}$
ON Delay Time	T	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		220		$\mu \mathrm{S}$
$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\text {BIAS }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Turn-on Time	Ton	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		2900		$\mu \mathrm{S}$
Turn-off Time	$\mathrm{T}_{\text {OFF }}$	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		2		$\mu \mathrm{S}$
$\mathrm{V}_{\text {Out }}$ Rise Time	T_{R}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		2800		$\mu \mathrm{S}$
$\mathrm{V}_{\text {Out }}$ Fall Time	T_{F}	$R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		3		$\mu \mathrm{S}$
ON Delay Time	T_{D}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		1260		$\mu \mathrm{S}$
$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\text {BIAS }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Turn-on Time	ToN	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		1890		$\mu \mathrm{S}$
Turn-off Time	$\mathrm{T}_{\text {OFF }}$	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		10		$\mu \mathrm{S}$
$\mathrm{V}_{\text {Out }}$ Rise Time	T_{R}	$R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		1100		$\mu \mathrm{S}$
$\mathrm{V}_{\text {Out }}$ Fall Time	T_{F}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		3		$\mu \mathrm{S}$
ON Delay Time	T_{D}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		1140		$\mu \mathrm{S}$

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 23 \mathrm{~m} \Omega$
 Single Channel Load Switch

- Application Information

Input Capacitor (Optional)

Place a $1 \mu \mathrm{~F}$ ceramic capacitor, C_{IN} between IN and GND as close as possible to the pins to limit the voltage drop on the input supply caused by inrush current when the power switch turns on into a discharged load capacitor. Recommend to adopt an input capacitance about 10 times higher than output one to prevent from excessive voltage drop when switching heavy load.

Output Capacitor (Optional)

Because of the body diode in NMOS, it is recommended to use a $C_{I N}$ greater than C_{L}. If a C_{L} is greater than $\mathrm{C}_{\mathbb{I N}}$, it will cause $\mathrm{V}_{\text {OUt }}$ to exceed $\mathrm{V}_{\mathbb{I N}}$ while the system supply is removed. This could result in current flow through the body diode from $\mathrm{V}_{\text {Out }}$ to $\mathrm{V}_{\text {IN }}$. $A C_{I N}: C_{L}=10: 1$ is recommended for minimizing $V_{I N}$ dip caused by inrush currents during startup, however a 10:1 ratio for capacitance is not required for proper functionality of the device. If a ratio is smaller than 10 (such as 1), it will cause slightly more $\mathrm{V}_{\mathbb{I N}}$ dip upon turn on due to inrush currents. This can be mitigated by increasing the capacitance on the C_{T} pin for a longer rise time (see the Adjustable Rise Time section).

ON and OFF Control

The EN pins control the state of AME6204. Asserting EN pin high activates the switch. EN pin is active-high with a low threshold, making it capable of interfacing with low-voltage signals. The EN pin can be applied by standard GPIO logic threshold. It can be used with any microcontroller with 1.2 V or higher GPIO voltage. Do
not make the pin floating and must be tied either high or low for proper functionality.

Quick Output Discharge (QOD)

When AME6204 is disabled, an internal discharge resistance is automatically connected between OUT and GND, thus discharge the remaining charge from the output. This resistance prevents the output from floating while the switch is disabled. For best results, it is recommended that AME6204 gets disabled before $\mathrm{V}_{\text {BIAS }}$ falls below the minimum recommended voltage.

Device Functional Modes

EN	IN to OUT	OUT to GND
H	ON	OFF
L	OFF	ON

Power Dissipation

The maximum IC junction temperature must be restricted to $125^{\circ} \mathrm{C}$ under normal operating conditions. To calculate the maximum allowable power dissipation

$$
\mathrm{P}_{\mathrm{D}(\max)}=\frac{\mathrm{T}_{\mathrm{J}(\max)}-\mathrm{T}_{\mathrm{A}}}{\theta_{\mathrm{JA}}}
$$

where

- $P_{D(\max)}$ is the maximum allowable power dissipation.
- $T_{J(\max)}$ is the maximum allowable junction temperature.
- T_{A} is the ambient temperature of the device.
- θ_{JA} is the junction to air thermal impedance. This parameter is highly dependent upon board layout.
$5.5 \mathrm{~V}, 6 \mathrm{~A}, 23 \mathrm{~m} \Omega$
AME6204 Single Channel Load Switch

Application Information (Contd.)

V_{IN} and $\mathrm{V}_{\text {BIAS }}$ Voltage Range

For optimal $R_{\text {ON }}$ performance, make sure $\mathrm{V}_{\mathbb{I N}} \leq \mathrm{V}_{\text {BIAS }}$. The device will still be functional if $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {BIAS }}$ but it will exhibit $R_{\text {ON }}$ greater than what is shown in the Characterization Curve " $V_{\text {IN }}$ v.s $R_{\text {ON" }}$.

Adjustable Rise Time

Place a capacitor between CT pin and GND to set the rise time of OUT pin. To ensure desired performance, a capacitor with a minimum voltage rating of 25 V must be applied on either CT pins. An approximate formula for the relationship between CT and rise time is (Equation accounts for 10% to 90% measurement on $\mathrm{V}_{\text {out }}$):

Rise Time $(\mu \mathrm{S})=\left(\mathrm{C}_{\mathrm{T}}+39\right) * \mathrm{~V}_{\text {OUT }} * 0.36+21$
where C_{T} is the capacitance value on the CT pin (in pF)
Rise time values measured on a typical device is shown as Table 1. Rise times shown below are only valid for the power-up sequence where IN and BIAS are already in steady state condition, and the EN pin is asserted high

Table 1. Rise Times on a typical device

$\mathrm{C}_{\mathrm{T}}(\mathrm{pF})$	Rise Time ($\mu \mathrm{s}$) $10 \% \sim 90 \%, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega^{(1)}$						
	5V	3.3 V	1.8 V	1.5 V	1.2 V	1.05V	0.8V
0	90.46	69.41	49.06	45.01	41.05	38.62	34.1
220	462.7	277.6	118.7	88.06	57.82	41.36	30
470	925.3	579.2	272.1	204.3	141.8	113.4	54.9
1000	1759	1122	557.7	437.4	313	260.3	150.1
2200	3965	2467	1285	1052	768.2	670.1	440.6
4700	8199	5240	2814	2266	1742	1450	1012
10000	20210	12090	6443	5391	4245	3639	2511

(1) Typical Values at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BIAS}}=5 \mathrm{~V}, 15 \mathrm{~V}$ X7R 10% Ceramic Capacitor
$5.5 \mathrm{~V}, 6 \mathrm{~A}, 23 \mathrm{~m} \Omega$

Characterization Curve

I_{Q} with $V_{\text {BIAS }}$

$I_{\text {SHDN }}$ V.s $\mathrm{V}_{\text {IN }}$

$V_{\text {IN }}$ V.s $R_{\text {ON }}$

I_{Q} with $V_{I N}$

$I_{\text {SHDN }}$ V.s $V_{\text {BIAS }}$

$V_{\text {BIAS }}$ v.s $R_{\text {ON }}$

Characterization Curve (Contd.)

$C_{\text {IN }}=1 \mu F, C_{\text {OUT }}=0.1 \mu F, R_{L}=10 \Omega, C_{T}=1 n F$

Turn ON Response Time

Turn ON Response Time

Turn ON Response Time

Turn OFF Response Time

Turn OFF Response Time

Turn OFF Response Time

Characterization Curve (Contd.)

$C_{\text {IN }}=1 \mu F, C_{\text {OUT }}=0.1 \mu F, R_{L}=10 \Omega, C_{T}=1 n F$

Turn ON Response Time

Turn OFF Response Time

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 23 \mathrm{~m} \Omega$
AME6204 Single Channel Load Switch

Tape and Reel Dimension

DFN-8D

($2 \times 2 \times 0.75 \mathrm{~mm}$)

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Pitch (P0)	Part Per Full Reel	Reel Size
DFN-8D	$8.0 \pm 0.1 \mathrm{~mm}$	$4.0 \pm 0.1 \mathrm{~mm}$	$4.0 \pm 0.1 \mathrm{~mm}$	3000 pcs	$180 \pm 1 \mathrm{~mm}$

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 23 \mathrm{~m} \Omega$
AME6204
Single Channel Load Switch

Package Dimension

DFN-8D
($2 \times 2 \times 0.75 \mathrm{~mm}$)

SYMBOLS	MILLIMETERS		INCHES			
	MIN		MAX	MIN		
MAX						
A	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.203 REF		0.008 REF			
D	1.900	2.100	0.075	0.083		
E	1.900	2.100	0.075	0.083		
D1	1.100	1.650	0.043	0.065		
E1	0.500	0.950	0.020	0.037		
K	0.200		MIN	0.008		MIN
b	0.180	0.300	0.007			
e	0.500		TYP	0.020		TYP
L	0.200	0.450	0.008			

■ Lead Pattern

Note:

1. Dimensions in Millimeters.
2. General tolerance $\pm 0.05 \mathrm{~mm}$ unless otherwise specified.
www.ame.com.tw
E-mail: sales@ame.com.tw

Life Support Policy:
These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president of AME, Inc.

AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information.
© AME, Inc. , March 2023
Document: P004-DS6204-D. 02

Corporate Headquarter
 AME, Inc.

8F-1, 12, WenHu St., Nei-Hu Dist.,
Taipei 114, Taiwan..
Tel: 8862 2627-8687
Fax: 8862 2659-2989

