$5.5 \mathrm{~V}, 6 \mathrm{~A}, 19 \mathrm{~m} \Omega$ Dual Channel Load Switch

General Description

The AME6206 is a small, low $R_{D S(O N)}$, dual-channel load switch with controlled turn on. The device contains two N -channel MOSFETs that can operate over an input voltage range of 0.8 V to 5.5 V and can offer a maximum continuous current of 6 A per channel. Each switch is independently controlled by an on and off input (EN1 and EN2), which can be driven directly by low-voltage control signals. In AME6206, a 220Ω on-chip load resistor is added for quick-output discharge when switch is turned off. It's available in a small, space-saving DFN-14A (3 x $2 \times 0.75 \mathrm{~mm}$) package with thermal pad allowing for high power dissipation.

Features

- Input Voltage Range: 0.8 V to 5.5 V
- Bias Voltage Supports: 2.5 V to 5.5 V
- Integrated Dual-Channel Load Switch
- Ultra low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} 19 \mathrm{~m} \Omega$ Per Channel
- 6A Maximum Continuous Current Per Channel
- Low Quiescent Current ($72 \mu \mathrm{~A}$)
- Thermal Protection
- Configurable Rise Time
- Quick Output Discharge (QOD)
- DFN-14A(3 x $2 \times 0.75 \mathrm{~mm}$) Package with Thermal Pad

Application

- Ultrabook, Notebooks and Netbooks
- Tablet PCs
- Consumer Electronics
- Set-top Boxes and Residential Gateways
- Telecom Systems
- Solid-State Drives (SSD)

■ Typical Application Schematic

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 19 \mathrm{~m} \Omega$

Function Block Diagram

Pin Configuration

Top View
DFN-14A ($3 \times 2 \times 0.75 \mathrm{~mm}$)

- Pin Description

Pin Name	Pin No.	I/O	Description
IN1	1,2	1	Power-switch 1 input. 0.8 V to BIAS voltage range for optimal $R_{\mathrm{DS}(\mathrm{ON})}$ is recommended. Place an optional decoupling capacitor between this pin and GND for reduce input voltage dip during turn on.
EN1	3	1	Power-switch 1 control input. Active high is turn-on. Do not leave floating.
BIAS	4	1	Bias voltage input. Recommend voltage range (2.5 V to 5.5 V) to supply the device.
EN2	5	1	Power-switch 2 control input. Active high is turn-on. Do not leave floating.
IN2	6, 7	1	Power-switch 2 input. 0.8 V to BIAS voltage range for optimal $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ is recommended. Place an optional decoupling capacitor between this pin and GND for reduce input voltage dip during turn on.
OUT2	8, 9	0	Power-switch 2 output.
CT2	10	1	Power-switch 2 slew-rate control. Capacitor must be rated for a minimum of 25 V for desired rise time performance. This pin can be left floating.
GND	11	-	Ground
CT1	12	1	Power-switch 1 slew-rate control. Capacitor must be rated for a minimum of 25 V for desired rise time performance. This pin can be left floating.
OUT1	13, 14	O	Power-switch 1 output.

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 19 \mathrm{~m} \Omega$ Dual Channel Load Switch

Ordering Information

AME6206-x x x

 Number of Pins
 Package Type
 Pin Configuration

Pin Configuration	Package Type	Number of Pins
A: 1. IN1	V:DFN	D:14
2. IN1		
3. EN1		
4. BIAS		
5. EN2		
6. IN2		
7. IN2		
8. OUT2		
9. OUT2		
10. CT2		
11. GND		
12. CT1		
14. OUT1		

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 19 \mathrm{~m} \Omega$ Dual Channel Load Switch

Absolute Maximum Ratings

Parameter	Value	Unit
Input Voltage (IN1, IN2)	-0.3 to +6	V
BIAS Voltage (BIAS)	-0.3 to +6	V
Output Voltage (OUT1, OUT2)	-0.3 to +6	V
Enable Voltage (EN1, EN2)	-0.3 to +6	V
Output Current (Continuous)	6	A
Output Current (Pulsed) (Note1)		8
ESD Ratings	HBM	± 2000

Note1: Maximum pulsed current switch per channel, pulse < $300 \mu \mathrm{~s}, 3 \%$ duty cycle.

■ Recommended Operation Conditions

Parameter	Symbol	Value	Unit
Input Voltage	$\mathrm{V}_{\text {IN }}$	0.8 to $\mathrm{V}_{\text {BIAS }}$	V
BIAS Voltage	$\mathrm{V}_{\text {BIAS }}$	2.5 to 5.5	V
Enable Voltage	$\mathrm{V}_{\text {EN }}$	0 to 5.5	V
Ambient Temperature Range	T_{A}	-40 to +85	
Junction Temperature Range	T_{J}	${ }^{\circ} \mathrm{C}$	
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +125	

■ Thermal Information

Parameter	Package	Die Attach	Symbol	Maximum	Unit
Thermal Resistance* (Junction to Case)	DFN-14A	Conductive Epoxy	θ_{JC}	11	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (Junction to Ambient)	DFN-14A	Conductive Epoxy	θ_{JA}	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Internal Power Dissipation	DFN-14A	Conductive Epoxy	P_{D}	2200	mW
Lead Temperature (soldering 10 sec)**					300
${ }^{\circ} \mathrm{C}$					

[^0]** MIL-STD-202G210F
5.5V, 6A, 19m

Electrical Specifications

$\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 1,2}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
BIAS Pin Quiescent Current (Both Channels)	I_{Q}	$\begin{gathered} \mathrm{I}_{\text {OUT } 1,2}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BIAS}}=5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{EN} 1,2}=5 \mathrm{~V} \end{gathered}$		72	96	$\mu \mathrm{A}$
		$\begin{gathered} \mathrm{I}_{\mathrm{OUT} 1,2}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{EN} 1,2}=2.5 \mathrm{~V} \end{gathered}$		36	48	$\mu \mathrm{A}$
BIAS Pin Quiescent Current (Single Channel)	I_{Q}	$\begin{gathered} \mathrm{l}_{\text {OUT } 1,2}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BIAS}}=5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{EN} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} 2}=0 \mathrm{~V} \end{gathered}$		60		$\mu \mathrm{A}$
		$\begin{aligned} \mathrm{I}_{\mathrm{OUT} 1,2}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BIAS}} & =2.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{EN} 1} & =2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} 2} \end{aligned}=0 \mathrm{~V},$		30		$\mu \mathrm{A}$
BIAS Pin Shutdown Current	$I_{\text {SHDN_BIAS }}$	$\mathrm{V}_{\mathrm{EN} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} 2}=0 \mathrm{~V}$		0.1	2	$\mu \mathrm{A}$
IN1, IN2 Pin Shutdown Current	$\mathrm{I}_{\text {SHDN_INX }}$	$\begin{gathered} \mathrm{V}_{\mathrm{EN} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} 2}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN} 1,2}=0.8 \mathrm{~V} \text { to } 5 \mathrm{~V} \end{gathered}$		0.1	2	$\mu \mathrm{A}$
EN Pin Current	$I_{E N}$	$\mathrm{V}_{\text {EN } 1,2}=5.5 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
ON Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{gathered} \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BIAS}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { to } 5 \mathrm{~V} \end{gathered}$		19	24	$\mathrm{m} \Omega$
		$\begin{gathered} \text { I OUT }=200 \mathrm{~mA}, \mathrm{~V}_{\text {BIAS }}=2.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{gathered}$		20	25	$\mathrm{m} \Omega$
Output Discharge Resistance	$\mathrm{R}_{\text {DSG }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}$		220	290	Ω
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {BIAS }}=2.5 \mathrm{~V}$		260	300	Ω
EN Pin High Level	$\mathrm{V}_{\text {EN_H }}$		1.2			V
EN Pin Low Level	$\mathrm{V}_{\text {EN_L }}$				0.6	V
Thermal Shutdown Temperature	$\mathrm{T}_{\text {SD }}$			150		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis	$\mathrm{T}_{\text {SDHY }}$			30		${ }^{\circ} \mathrm{C}$

Parameter Measurement Information

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Turn-on Time	Ton	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		1210		$\mu \mathrm{S}$
Turn-off Time	Toff	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		6		$\mu \mathrm{S}$
$V_{\text {Out }}$ Rise Time	T_{R}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		1710		$\mu \mathrm{S}$
$V_{\text {Out }}$ Fall Time	T_{F}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		7		$\mu \mathrm{S}$
ON Delay Time	T ${ }_{\text {D }}$	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		190		$\mu \mathrm{S}$
$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$						
Turn-on Time	Ton	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		370		$\mu \mathrm{S}$
Turn-off Time	Toff	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		9		$\mu \mathrm{S}$
$V_{\text {Out }}$ Rise Time	T_{R}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		310		$\mu \mathrm{S}$
$V_{\text {Out }}$ Fall Time	T_{F}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		5		$\mu \mathrm{S}$
ON Delay Time	T	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		190		$\mu \mathrm{S}$
$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=\mathrm{V}_{\text {BIAS }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Turn-on Time	Ton	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		2600		$\mu \mathrm{S}$
Turn-off Time	Toff	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		11		$\mu \mathrm{S}$
$V_{\text {Out }}$ Rise Time	T_{R}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		2600		$\mu \mathrm{S}$
$V_{\text {Out }}$ Fall Time	T_{F}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		7		$\mu \mathrm{S}$
ON Delay Time	T	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		800		$\mu \mathrm{S}$
$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=\mathrm{V}_{\text {BIAS }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
Turn-on Time	Ton	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		900		$\mu \mathrm{S}$
Turn-off Time	Toff	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		7		$\mu \mathrm{S}$
$V_{\text {Out }}$ Rise Time	T_{R}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		900		$\mu \mathrm{S}$
$\mathrm{V}_{\text {Out }}$ Fall Time	T_{F}	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		5		$\mu \mathrm{S}$
ON Delay Time	T ${ }_{\text {D }}$	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{T}=1 \mathrm{nF}$		750		$\mu \mathrm{S}$

5.5V, 6A, 19m
 Dual Channel Load Switch

- Application Information

Input Capacitor (Optional)

Place a $1 \mu \mathrm{~F}$ ceramic capacitor, C_{IN} between IN and GND as close as possible to the pins to limit the voltage drop on the input supply caused by inrush current when the power switch turns on into a discharged load capacitor. Recommend to adopt an input capacitance about 10 times higher than output one to prevent from excessive voltage drop when switching heavy load.

Output Capacitor (Optional)

Because of the body diode in NMOS, it is recommended to use a $\mathrm{C}_{\text {IN }}$ greater than C_{L}. If a C_{L} is greater than $\mathrm{C}_{\mathbb{I N}}$, it will cause $\mathrm{V}_{\text {OUt }}$ to exceed $\mathrm{V}_{\mathbb{I N}}$ while the system supply is removed. This could result in current flow through the body diode from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$. $A C_{I N}: C_{L}=10: 1$ is recommended for minimizing $V_{I N}$ dip caused by inrush currents during startup, however a 10:1 ratio for capacitance is not required for proper functionality of the device. If a ratio is smaller than 10 (such as 1), it will cause slightly more $\mathrm{V}_{\mathbb{I N}}$ dip upon turn on due to inrush currents. This can be mitigated by increasing the capacitance on the CT pin for a longer rise time (see the Adjustable Rise Time section).

ON and OFF Control

The EN pins control the state of AME6206. Asserting EN pin high activates the switch. EN pin is active-high with a low threshold, making it capable of interfacing with low-voltage signals. The EN pin can be applied by standard GPIO logic threshold. It can be used with any microcontroller with 1.2 V or higher GPIO voltage. Do
not make the pin floating and must be tied either high or low for proper functionality.

Quick Output Discharge (QOD)

When AME6206 is disabled, an internal discharge resistance is automatically connected between OUT and GND, thus discharge the remaining charge from the output. This resistance prevents the output from floating while the switch is disabled. For best results, it is recommended that AME6206 gets disabled before $\mathrm{V}_{\text {BIAS }}$ falls below the minimum recommended voltage.

Device Functional Modes

EN	IN to OUT	OUT to GND
H	ON	OFF
L	OFF	ON

Power Dissipation

The maximum IC junction temperature must be restricted to $125^{\circ} \mathrm{C}$ under normal operating conditions. To calculate the maximum allowable power dissipation

$$
P_{D(\max)}=\frac{T_{J(\max)}-T_{A}}{\theta_{J A}}
$$

where

- $P_{D(\max)}$ is the maximum allowable power dissipation.
- $T_{J(\max)}$ is the maximum allowable junction temperature.
- T_{A} is the ambient temperature of the device.
- θ_{JA} is the junction to air thermal impedance. This parameter is highly dependent upon board layout.
5.5V, 6A, 19m Dual Channel Load Switch

Application Information (Contd.)

Adjustable Rise Time

Place a capacitor between CT pin and GND to set the rise time for each channel. To ensure desired performance, a capacitor with a minimum voltage rating of 25 V must be applied on either CT pins. An approximate formula for the relationship between CT and rise time is shown

Rise Time $(\mu \mathrm{S})=\left(\mathrm{C}_{\mathrm{T}}+58\right)$ * $\mathrm{V}_{\text {OUT }} * 0.36+21$
It account for 10% to 90% measurement on $\mathrm{V}_{\text {out }}$ and do not apply for $\mathrm{C}_{\mathrm{T}}<100 \mathrm{pF}$. Use Table 1 to determine rise times for when $\mathrm{C}_{\mathrm{T}}=0 \mathrm{pF}$.
where C_{T} is the capacitance value on the CT pin (pF)
Rise time values measured on a typical device is shown as table. Rise times shown below are only valid for the power-up sequence where IN and BIAS are already in steady state condition, and the EN pin is asserted high.

Table 1. Rise Time Values

$\mathrm{C}_{\mathrm{T}}(\mathrm{pF})$	Rise Time ($\mu \mathrm{s}$) $10 \% \sim 90 \%, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega^{(1)}$							
	5V	3.3V	2.5 V	1.8V	1.5V	1.2V	1.05V	0.8V
0	126	97	79	66	59	50	44	37
220	498	341	268	182	167	131	121	100
470	971	641	482	345	291	236	201	162
1000	1869	1195	854	638	520	441	395	313
2200	4172	2643	1914	1405	1130	952	818	652
4700	8615	5534	4262	3032	2580	2107	1689	1366
10000	18003	11897	8911	6294	5278	4823	4640	3060

(1) Typical Values at $25^{\circ} \mathrm{C}, \mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}, 15 \mathrm{~V}$ X7R 10% Ceramic Cap
$5.5 \mathrm{~V}, 6 \mathrm{~A}, 19 \mathrm{~m} \Omega$

Characterization Curve

Turn On Response Time

Turn On Response Time

Turn Off Response Time

Turn Off Response Time

Turn Off Response Time

Characterization Curve (Contd.)

$\mathrm{V}_{\text {BIAS }}$ POR

Dual Channel $V_{\text {BIAS }} I_{Q}$ vs. $V_{\text {BIAS }}$

Turn Off Response Time

Enable ON/OFF Control

Single Channel IQ

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 19 \mathrm{~m} \Omega$

Characterization Curve (Contd.)

EN High vs. $\mathrm{V}_{\text {BIAs }}$

$\mathbf{R}_{\mathrm{DS}(\mathrm{ON})}$ vs. Temp

Pulldown Resistance vs. $\mathrm{V}_{\text {BIAS }}$

$R_{\text {DS(ON) }}$ vs. $\mathrm{V}_{\text {IN }}$

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 19 \mathrm{~m} \Omega$ Dual Channel Load Switch

Characterization Curve (Contd.)

Dual Channel VBIAS
Quiescent Current vs. Temp

Single Channel $V_{\text {BIAS }}$
Quiescent Current vs. Temp

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 19 \mathrm{~m} \Omega$ Dual Channel Load Switch

Tape and Reel Dimension

DFN-14A (3 x $2 \times 0.75 \mathrm{~mm}$)

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Pitch (P0)	Part Per Full Reel	Reel Size
DFN-14A	$8.0 \pm 0.1 \mathrm{~mm}$	$4.0 \pm 0.1 \mathrm{~mm}$	$4.0 \pm 0.1 \mathrm{~mm}$	3000 pcs	$180 \pm 1 \mathrm{~mm}$

$5.5 \mathrm{~V}, 6 \mathrm{~A}, 19 \mathrm{~m} \Omega$
AME6206

Package Dimension

DFN-14A (3 x $2 \times 0.75 \mathrm{~mm}$)

SYMBOLS	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A2	$0.203 R E F$		$0.008 R E F$			
D	1.900	2.100	0.075	0.083		
E	2.900	3.100	0.114	0.122		
D1	0.700		1.000	0.028		0.039
E1	2.400	2.600	0.094	0.102		
k	$0.150 \mathrm{MIN}$		$0.0059 M I N$			
b	0.130		0.230	0.005		0.009
e	0.400 TYP.		$0.016 T Y P$			
L	0.224		0.400	0.009		0.016
L1	$0.110 R E F$		$0.004 R E F$			

■ Lead Pattern

Note:

1. Dimensions in Millimeters.
2. General tolerance $\pm 0.05 \mathrm{~mm}$ unless otherwise specified
www.ame.com.tw
E-mail: sales@ame.com.tw

Life Support Policy:

These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president of AME, Inc.

AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information.
© AME, Inc. , May 2023
Document: P005-DS6206-C. 01

Corporate Headquarter
 AME, Inc.

8F-1, 12, WenHu St., Nei-Hu Dist.,
Taipei 114, Taiwan..
Tel: 8862 2627-8687
Fax: 8862 2659-2989

[^0]: * Measure θ_{Jc} on backside center of Exposed Pad.

